Conditional probability cont., Independence

Modeling (lack of) causality

Michael Psenka

What we aim to model

Independence

Definition. Given a random variable $X = (\Omega, \mathbb{P})$, two events $A, B \subset \Omega$ are said to be independent if the following equation holds:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Equivalent definition

Examples

Independence in joint distributions

Mutual independence

Definition. Given a random variable $X = (\Omega, \mathbb{P})$, a collection of events $A_1, ..., A_n \subset \Omega$ are said to be mutually independent if the following equation holds for every subset $I \subset \{1, ..., n\}$ such that $|I| \geq 2$:

$$\mathbb{P}(\cap_{i\in I} A_i) = \Pi_{i\in I} \mathbb{P}(A_i).$$

Why mutual independence?

General product rule

Theorem. Given a random variable $X = (\Omega, \mathbb{P})$, and a collection of events $A_1, ..., A_n \subset \Omega$, the following equation holds:

$$\mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2 \mid A_1)\mathbb{P}(A_3 \mid A_1 \cap A_2) \dots \mathbb{P}(A_n \mid A_1 \cap \dots \cap A_{n-1}).$$

General product rule

General product rule: equivalent forms

Monty Hall revisited